
Journal of Statistical Physics, Vol. 29, No. 1, 1982 
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The symmetric simple exclusion process on ~ with sources at _+ L, L E N is 
considered. The stationary measure ~L is studied in the limit as L diverges. The 
first order correction to its limit is proven to be of order l / L  and it is explicitly 
computed. The result is in agreement with the analysis of the model from the 
hydrodynamical  point of view initiated in Ref. 1. 

KEY WORDS: Hydrodynamical behavior of microscopic systems; sto- 
chastic dynamics; simple exclusion process; local equilibrium; Fourier law. 

1. INTRODUCTION 

The analysis of the small deviations from local equilibrium for the symmet- 
ric simple exclusion process was initiated in Ref. 1. In this paper we 
complete it by studying the "stationary case." We refer to Ref. 1 for 
motivations and notation. The problem and its solution are stated in 
Section 2, the proof in Section 3. The main technique is based on the 
introduction of the "weak coupling" between the independent and the 
simple exclusion processes, which might be interesting per se; cf. Section 
3.1. 

2. RESULTS 

The symmetric simple exclusion process on 7/with sources at + L has 
been studied in Refs. 6 and 5. It is a Markov process with state space 

Istituto Matematico Universit~i dell'Aquila, L'Aquila, Italy. 
2 Instituto de Matematica e Estatistica, Universidade de S~o Paulo, S~o Paulo, Brazil. 
3 Istituto di Meccanica e Macchine, Universit~ dell'Aquila, L'Aquila, Italy. 
4 Istituto Matematico universit~t di Roma,  Rome, Italy. 

81 

0022-4715/82/0900-0081503.00/0 �9 1982 Plenum Publishing Corporation 



82 De Masi et al. 

{0, 1 }2L+ 1 and generator Z L given by 

L - - I  

(ELf)(~) = (1/2) E [f(~(x,x + 1 ) ) - / ( ~ ) ]  + (1/2) E 2 
x = - - L  e = - + l  6 ~ 0 , 1  

X (Sp(e)[Z(~(eL, 8)) - f(~)] + (I - 8)[I -p(e)] 

• [ f (~  (eL, 6 )) - f (~)  ] } (2.1) 

,=,(x), xE[-L,L], 
[rl(x,x + l)](y) = ~(y) for y =/= x, x + 1 

= x  for y = x + l  

= x + l  for s  
[~(L, 8)](y)-- ~(y) for y < L 

= 6  for y = L  
[~(-L, 8)](y)=~(y) for y>-L 

= 6 for y = - L 

O< p ( e ) <  1 for E= +1 

The first term on the right-hand side of Eq. (2.1) describes the usual simple 
exclusion process, namely, each particle after an independent Poisson time 
of mean 1 jumps on one of its nearest-neighbor sites (with probability x) If 2 " 
the chosen place is occupied the other particle is forced to make the 
opposite jump. (We assume that particles are indistinguishable so that the 
above can be rephrased by saying that the jump is forbidden if the chosen 
site is occupied, point hard core condition.) The other terms on the 
right-hand side of Eq. (2.1) describes death and birth processes at + L .  
After an independent Poisson time of mean 1 a particle is created at L 
[ - L ]  with probability p(1) [p ( -1 ) ]  or destroyed with complementary 
probability. The choice of the same intensity makes computations simpler; 
more general cases can, however, be handled with the same techniques. It is 
easy to see that, given L, p(1), p ( -  1) there is a unique stationary measure 
~L; cf. Ref. 5. From a hydrodynamical point of view the interest is focused 
on the local structure of/~L as L diverges; in particular our problem is the 
computation of the first-order correction to the limiting Bernoulli state. We 
obtain the following: 

Theorem 2.1. Let ~ E ( -  1, 1) and A be a bounded region. Let 

p(~)=�89189 (2.2) 
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and 

Ua(~A+[~L]) = E ax[~?(x + [ ~ L i ) - p l  
x c A  

l + ~  [~(x + [~L]) -p] [ , (y  + [~L])-p] 
x , y ~ A  

where 

a = (p  _ p 2 ) - ' p ,  ff = � 8 9  _ p2)-2(1 _ ~2)fl,2 

~[p( )-e(-1)] p = p ( ~ )  F = I 1 

Let ~L = 1 / ( L  + 1)[~L], then 

f 1 UdnA+t,LI) ~ -_ 0 lira L ~ L ( ~ A + [ ~ L ] )  - -  V-(,D(V/A+tCL])exp- 
Y L---~ to J 

were if p is a probability measure on (0, l }x 

P(~A+r~LI) = p ( ( , ( x )  = ~, Vx  e A + [ ~ L ] ) )  

and pp is the Bernoulli measure with parameter p. 

(2.3) 

(2.4) 

3, PROOFS 

By going to the dual process (5) we obtain 
t2 

= 

Y=(x~  . . . . .  xn), - L + t < x ~ < L - 1 ,  

i = I, . . . , n, xl < . . . < x,, (3.1b) 

/~L_ 1(~) m_ i~L_l((~(xi)  = 1, i =  1 , . . . ,  n}) (3.1c) 

P(2;  k; L) denotes the probability that k particles reach L before - L and 
that n - k reach - L before L. The probability is taken with respect to the 
simple exclusion process for n particles starting at Y with the condition that 
once a particle is at +_ L it disppears. It is known (6) that 

f l ( L + x i - i + l )  
P(Y;  n; L) = 2-L--- 7 ; f 

i = 1  

P ( x ; O ; L ) =  f l [  L - ( x i + n - i )  ~- f , 'Z(~-- '~)  

(3.2a) 

(3.2b) 
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Equation (3.2) does not determine/~L-1(2) except for the case n = 2. We 
will extend Eq. (3.2) to all n but only up to first order in 1/L. There are 
special symmetry considerations which allow an exact computation for the 
case when all particles exit from the same side and we have not been able 
to find analogous arguments in general. 

The usual technique in the estimation of probabilities for the simple 
exclusion process is based on the comparison with the free (independent) 
process; cf. Refs. 1 and 4, for instance. Basically one introduces a coupled 
process and typically the interacting and the corresponding free particles 
are at mutual distance within x/t (at time t). This was enough for the cases 
treated in Ref. 1; in the present problem the "error" could be catastrophic, 
even a shift by 1 between corresponding particles in the coupled process 
could determine a different exit for a particle in the two processes. This 
might occur with small probability, and in Ref. 2 we exploited this b y  
reducing the problem to a two-particle case (the other particles behaving 
"normally") and then using Eq. (3.2). The proof unfortunately contained a 
mistake which we have not been able to fix using that line of approach. The 
main consideration in the present approach is that the probability' P(Y; k; 
L) depends only on the paths of the particles; it does not matter what time 
is taken for each one to travel along its trajectory. We exploit this b y  
introducing a "weak coupling" between the interacting and free processes; 
we lose the time correlation between the displacements of the correspond- 
ing particles but we can get much more accuracy" on their space paths. To 
accomplish this we will introduce a "coordinate reduction," which is a 
typical tool to reduce pure hard-core interactions to free cases, namely, we 
change the position x i of the interacting particle to x~ = xj - i + 1. In these 
coordinates all displacements are allowed, the actual position being recov- 
ered with the knowledge of the mutual ordering among the particles, [this is 
the reason for the appearance of x~ - i + 1 in Eq. (3.2a)]. "['he difficulty 
comes from the fact that times cannot be matched: when two interacting 
particles are at nearest-neighbor (n.n.) sites they separate more slowly than 
two free particles standing on the same site. We will show that the changes 
in the x~ are those of an independent process, the times and the order at 
which they occur being, however, different. We will prove that there is an 
isomorphic mapping between the probability spaces on which the two 
processes are realized for which the space trajectories of each x~ are 
mapped in the same space trajectory of the corresponding free particle; we 
agree to call this a weak coupling between the two processes. 

We divide the remainder of the section into two parts: in the first one 
we describe the weak coupling, in the second one we use it to prove of 
Theorem 2.1. 
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3.1. Weak Coupling 

We will introduce a probability space (~2, 0y, p )  where both the inde- 
pendent and the interacting processes are realized. The space f~ is equipped 
with an increasing family of o algebras ~ The interacting process 
(xl( t)  . . . . .  x n ( t ) )  starts from x 1 . . . . .  xn, (x l < x  2 <  - . .  < x n )  and is 
measurable with respect to ~ The independent process x ~  x ~  
starts from x~ . . . . .  x~, x~ = x i - i  + 1, i = 1 . . . . .  n and is anticipated 
with respect to the filtration ~-(t). More precisely, we will prove that for all 
i =  1 , . . . , n  and t ~ R +  there are stopping times T ( t , i )  such that 
[x~ is measurable with respect to ~T(t,i).  

The main result is the following: 

Theorem 3.1. (a) T ( t ,  i) is nondecreasing in t, T ( t ,  i) >>. t, and it is 
almost surely finite. 

(b) There is a labeling rule for the simple exclusion process so that the 
following holds. Define for YI ,  �9 �9 �9 , Y ,  (Yi  =/= Yj ,  i =/=j) 

k ( i ;  Yl . . . . .  y~) = Cardinality(j  :y j  <<. Yi) 

and given y ~ , . . . ,  y ,  as above, 

y ;  = y i -  k ( i ;  y l ,  . . . , y , )  + 1 

we have that for all t 

x ' i ( r ( t , i ) )  = x ~  i =  1 . . . . .  n 

As a consequence the sequence of jumpts occurring in the path of each 
independent particle are just the same as those of the corresponding 
interacting one in its "reduced coordinate." 

(c) For every e > 0 there exist A, B > 0 so that 

P ( ( T ( t , i ) -  t >  t l / 2 + ' } ) <  A e  - e ' '  

P ( ( I x i ( t )  - x?(t)l ) tl/4+e)) ~ A e  -B'~ 

Our first step is the explicit construction of the probability space (f~, 0y, p) .  
For every x E Z we introduce a Poison point process of parameter 1 and to 
each point a • 1 mark is attached with independent symmetric probability. 
Furthermore, for every 2 < m < n we define a Bernoulli scheme with 
values on the permutation of 1 . . . . .  m, each permutation having the same 
probability. The space (~2, oy, p )  is the direct product of all these spaces. 

The  Fi l trat ion ~ ( t ) .  We consider the initial position of the particles 
2 = x~ . . . . .  xn as fixed. The first stopping time ~-a is the first time a mark 
appears among the sites 2. For t < ~1 we put 2 ( t )  -- Y, ~1 determines a site 
and a possible jump for the particle at that site: namely, if x/ is the site 
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where the m a r k  occurs and  a its value, then at t ime ~'1 the new configura-  
tion is 2 ' = x '  l . . . . .  x" with x j = x j ,  j v  a i ,  and x ~ = x  i + o  if x i + a v  ~x j ,  
Vj v a i, and  = x i otherwise. Starting f rom x(~'l) a second s topping t ime ~-2 
and a trajectory 2(t) ,  ~'1 ~< t < T 2 are def ined as before. Recursively are 
then defined q-3 . . . . .  q-n . . . .  and  Y(t) up to q-n . . . .  We  will now introduce 
a labeling of the particles; the corresponding process will be  hereaf ter  
referred to as the labeled process. We say that  a cluster occurs in the 
configurat ion f i = Y l  . . . . .  y~ ( y i v ~ Y j  i v~ j )  if there are m ) 2  nearest-  
neighbor  particles. Particles keep their labels until they get into a cluster, at  
which t ime labels are uniformly randomized  inside the cluster. This proce-  
dure starts at t ime zero. Assume there are k clusters in 2, assign an 
arbi t rary ordering among  them and  say there are m I . . . . .  m k particles, 
respectively. Then  the labels of the particles in the first cluster are changed 
according to the first pe rmuta t ion  of m I integers appear ing  in ~. Let  it be  
~r(1) . . . . .  ~(rnl); then the label of the first particle in the cluster becomes  
that  of the ~ ( l ) th  and  so on. For  the second cluster we use the first 
pe rmuta t ion  with m 2 integers if m 2 @ m I or the second with m f if m 2 = ml,  
and  so on for all the others clusters. This defines the labeled conf igurat ion 
at t ime 0 +. The  labels are then kept  by  the particles up to ~'m, the first 
a m o n g  q-l . . . . .  ~-k . . . .  for which either a new cluster appears  with respect  
to those in q-m-1 or an existing One increases. At  that  t ime the labels of the 
particles in that  cluster are changed according to the first not  a l ready used 
permuta t ion  of m integers, if the cluster has m particles. ~ is the smallest  
a algebra in oy for which x(t ') ,  t '  < t, q-i A t, i ~ N, and  the sites and  values 
of the marks  corresponding to q-i A t, i ~ N, are measurables .  

The Interacting Process. I t  is easy to see that  the process Y( t )  (neglect- 
ing the labels of the particles) is the simple exclusion process start ing at 2. 

The  independent  process x~ has initial posit ion x' ,  x" = x i - i + 1, 
where x is the labeled conf igurat ion of the interact ing process at t ime 0 +. 
The  times when particles move  are ~'1, T2 . . . . .  The  particle which moves  at  
t ime q-m has the label of the interacting particle that  at t ime %~_ ~ is at the 
site which determines ~'m. To  specify the j u m p  of the independent  particle 
we do the following. Given  the labeled configurat ion x we define x'  
as x~ = xi - k ( i , x )  + 1, i = 1 . . . . .  n. Let 8x~(1), . . . ,  8x~(m) . . . . .  i = l, 
. . . .  n be  the changes occurr ing in x ' ( t ) ,  t ~ ~ + .  We then say that  the 

changes 6x~ . . . . .  8x~ . . . . .  i =  1 . . . . .  n are the same as 8x~(1), 
. . . .  8x~(m) . . . . .  respectively, i = 1, . . . ,  n. 

I t  is easy to verify that  the times ~'m are distr ibuted according to a 
Poisson point  process of intensity n, that  the label of the independent  
particle which moves  at t ime ~-~ has probabi l i ty  1 / n  independent ly  of ~ 
t '  < q'm, and  that  the r a n d o m  variables 8x[(m), i ~ {1 . . . . .  n}, m ~ N are 
independent  symmetr ic  r a n d o m  variables, so that  x~ describes an inde- 
pendent  process for n particles starting at  x. 
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Given i ~ ( 1  . . . .  , n )  and t ~ +  the stopping time T(t,i) is the 
greatest between t and the time at which 6x'~(m) occurs, where m is the [~ 
measurable] number of times x ~ moves up to time t. x~ 0 << t' <<. t is 
then ~T~t, i~ measurable. 

Parts (a) and (b) of Theorem 3.1 are direct consequences of the above 
construction. The difference between T(t, i) and t depends on how many 
times before t a mark appeared which referred to the i particle and for 
which the xj coordinate did not change. This can be estimated in terms of 
the time any two interacting particles are close (n.n.) which increases less 
than tl/2+~(e > 0) with probability greater than 1 - A'e -A't~, A" > 0 (A' 
and A" depending on e); cf. Ref. 4. It is then easy to get the estimates of 
Theorem 3.1 (c). 

We conclude this subsection with the following remark. Let (Y, ~, P) 
and (y0, o~o, p0) be probability spaces where the interacting labeled process 
x(t) and x~ are realized with oy[~] being the o algebra generated by 
(x(t))[{x~ Then there exists an isomorphic mapping g, from (Y, oy, p )  
to (yo, oyO, pO), which makes 6x~(m)= 6x~ for all i ~  {1 . . . . .  n} and 
m ~ N. We have already proven in Theorem 3.1 that the process 6x'~(m), 
6x~ have the same distribution; therefore an isomorphic correspondence 
between the atoms of the measurable partition 7r generated by the 6x'i(m ) 
variables in Y and ~r ~ generated by 6x~ in y0 is set. The conditional 
probability of P to each atom of ~r is nonatomic and the same happens for 
~r ~ Furthermore, both P and P 0 are nonatomic after relativitation to the o 
algebras generated by ~r and 7r ~ respectively. By the theorem of Ref. 7 ~r 
has an orthogonal complement, namely, there is ~r • such that P is the 
direct product of P relativized to Y/~r and Y./~r • Analogously for Tr ~ Both 
P on Y/~r • and p0 on Y~176177 are nonatomic Lebesgue measures, hence 
isomorphic for a mapping qb. The above-defined correspondence between 
the atoms of Tr and ~r ~ together with q5 defines the isomorphic mapping 
between (Y, oy, p )  and (y0~,  p0). 

3.2. Proof of Theorem 2.1. 

We use the labeling described in Section 3.1 to rewrite Eq. (3.1) as 

/~L_l(s = • P ( x ; , ; L )  lYI p(ei) (3.3) 
el - . . on  i=1  
c/=~+l 

P(x; e; L) is the probability that particle i reaches ~iL before - e iL .  The 
probability is computed with resepct to the labeled exclusion process as 
defined in Section 3.1 with the rule that once a particle reaches _+ L it 
disappears (the othe~;s moving according to the same prescriptions but with 
reference to a number of particles decreased by one). We have the follow- 
ing: 
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L e m m a  3.1. For ~ E ( -  1, 1), 

l imL ( [ IZL(~(X ~ + [ ~L ]) = 1, i = 1 . . . . .  n) - P(~L 

-[~L ~'.,.~,,( P(x  + [ ~ L ] ; ( ; L  + I) 

- e~ + F q ; , ; L  + 1)} P( i) 

[p (1)  - p ( -  

~L = ( L +  1 ) ' [ ~ L ] ,  x + [ ~ L ] = - ( x , + [ ~ L ]  . . . . .  x~ + [~L]) 

p(~) is defined in Eq. (2.2) and P~ e; L) is the probability that particle i 
reaches c/L before - ~ / L  for the independent process starting at x. 

Proof, It is easy to see that P~ r L) = (L + r and from this 
the lemma follows easily. �9 

The above estimate leads to the appearance of the one-body potential 
in Theorem 2.1. 

From Lemma 3.1 we reduce the problem to the computation of the 
limit of L[P(x + [~L]; c; L) - P~ + [~L]; c; L)]. The coupling we have 
introduced in Section 3.1 compares the labeled simple exclusion process 
starting at x with the independent one starting at x'. It is therefore 
necessary to estimate the contribution of the independent process when it 
starts from x and from x'. We easily have (and therefore we omit its proof) 
the following: 

Lemma 3.2. For ~ ~ ( -  1, l), 
H limL,, ~...~,,[P~176 

1 (1 + 
(i. k) q~2 
i ~ - k  

We are now left with the problem of comparing P(x + [~L];c;L) and 
P~ + [~L]; c; L). For notational simplicity we only consider ~ = 0. We 
realize the independent and simple exclusion processes on (f~, ~ , P )  as in 
Section 3.1. However, it should be remembered that once an interacting 
particle reaches _ L it disappears and so at later times the construction of 
the labeled interacting process takes account only of the remaining parti- 
cles. Memory of the disappeared particle is, however, left when one 
recovers the positions of the particles from their reduced coordinate 
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description: in the ordering of the configuration the particles which reached 
- L are the first ones, those at + L the last ones. (For the independent 
process, of course, the above remarks are irrelevant.) 

We introduce the stopping time Xi(+)[Xi(-)] as the first time x~ 
reaches L - n [ - L +  1] and Xi=min(Xi(+),2~i(-)},  i =  1 . . . .  ,n .  For 
i = 1 . . . . .  n let 

A~(j, - )  -- (;k i = 7~i(-), x ~  > - L - j ,  Vt ~ Xi(+)} 

Ai( j, + )  = (X~ = h i (+  ), x ~  < L -  n + j  + 1, Vt ~< X~(-)} 

A~(j) = A~(j, - )  U Ai( j, + )  (3.4) 

IU A ~ = Ai(n - 1 
i = l  

By Theorem 3.1(b) we have that (T~[~ ~ below are the stopping times at 
_+ L for the interacting [independent] particle i) 

=fA dPl({x~176 i= t . . . . .  n}) (3.5) 

We choose ~ > 0 small enough, for instance 8 = t/ ' t00, and we set T(L) 
= L ~. We then define for i = 1 . . . . .  n 

Bi = {x~ = x i ( - ) ,  ~ t  < x , ( + ) ,  t < x~ + r ( c ) ,  x ? ( t )  = - c - n + 1} 

M ()ki=~j(-l-),::It<~i(--),t(~i+ Z(L),x?(t)=g} (3.6) 

Vi={Xi=Xi( - ) , x~  - L  + I, VtE[A;+ T(L) ,N, (+)]}  

U (Xi=X,(+),x~ L - n ,  Vt~[Xi+ T(L) ,X i ( - ) ]  } (3.7) 

C =  ( L  2-a~<A s~<L 2+a , i=  1 . . . . .  n; 

IXi--~l> L2-aViCj; T(i , t)--t  < tl/2+aVt> L 2-~} (3.81) 

It remains to compare the interacting and independent processes in the set 
U~'=~A~(n- t). In order to write the exit condition for the interacting 
particles in a computable way we restrict this space by imposing further 
conditions. We therefore need the following: 

I.emma 3.3. For every i E (1, . . . .  n}, 

l imLP A iA C (3 D z(~B} =0 
j @ i  ~ j 

where A~ = 4 ( n  - 1). 
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Proof. We use the following (3) for the distribution density F(t,a) of 
the stopping time at a for a simple random walk which starts at the origin: 
as a diverges 

F(t,  a ) ~const la  I t - 3/2e- a2/2' (3.9) 

From this it easily follows that 

l i m P ( r  2-~ < 2t i < L 2+~) = 1, i =  1 , . . . ,  n (3.10a) 

l i m P ( I X M ) -  Xj(c'){ > L 2-~) = 1, V,, , '  = _+1; Vi~j (3.10b) 

By use of Eq. (3.10) and Theorem 3.1(c) we have that 

limLP(A~ (3 C C ) = 0 

F o r j  ~ i 

P(A i N B / )  = P(Ai)P(B f ) 

and P(Ai) behaves as L -1 while using Eq. (3.9) limL_,ooP(Bf)= 0. We 
finally have 

P[Ai(n - I, - )  (3 D[] <~ p(~O 0 ~) 

~o= {xO(t) > _ L _  n + 1, Vt ~ [ X i ( - ) , X i ( -  ) + T(L)]}  

U (2ti(-) + T(L) > Xi(+)} 

0 ,,  } --- {=17 ~ [ X , ( - )  + T(L) ,Xi(+)]  .: - L -  n + 1 < x, (r) < - L ;  

x ~  1, Vt ~ ['~,Xi(+)] ) 

P(Ai(n - l, - )  N D[ ).< E(t(}0)le(l(~-)x~ Vt E (0,+l)) ~< t t L - ' P ( ~  ~ 

where H is a suitable constant  independent  of L. By Eq. (3.9), 
limL ... .  p(~o) = 0. Analogous estimate holds for Ai(n - l, + ) and then the 
lemma follows easily. II 

Lemma 3.4. L e t  T~[T,.~ i = 1 . . . . .  n, be the stopping time at +__ L 
for xi(t)[x~ We have that for i = t . . . . .  n, 

l imLE(I(A,)  f l  I ( x j ( T j ) = e j L ) -  I'I l(Xj=~.j(ej)) 
j=l  j ~ l  
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where 

q~,(k) = 1 if k, = X , ( - ) ,  Xk = Xk(-- ) < h i ( - -  ) 

= 0 otherwise 

+i(k) = 1 ifXi = )ti(+ ) and k, = X , ( + )  < h i (+  ) 

= 0 otherwise 

(3.12) 

(3.13) 

Proof. By Lemma  3.3 we have 

l imL[P( Ai~ '] (x j (Tj )=ejL}  

( ~ n~tl - P A i  A (xj(Tj) = eyL} A C A D i 
j- /- i  ] J  

By definition of Bj we have 

= 0 ( 3 . 1 4 )  

Bja ( z j ( r j ) =  ~jL} = (xj = xj(~j)} n ~j 

For  trajectories in (']j~iBj N C we have that if X i = X i ( - )  at that time 
~ k ~  ePi(k) particles have already reached - L  for L large enough. Because 
we consider trajectories in D i n  C we also have that the exit condit ion at 
- L  for particle i reads as the condi t ion for x~ to reach - L -  
~k~iq)i(k). Analogous argument  is used when X i = Xi(+).  By Lemma  3.3 
we complete the proof  of Eq. (3.11). �9 

Let  Tt ~ be the stopping time at _+ L for x~ we then have 

limL[ P({xj(Tj) = ejL, j =  1 . . . . .  n}) 

x l[l(Ai(k~,~ ~(~)+ ' ) ) I (A (1))l'(~' ~'()) 

+II(A,(n+)) ,(Ai(~,(~)+l+))] 

• 1(~,=~/(+))}) (315) 
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After condit ioning to x~ for t < X i and to xf(t) ,  Vt, Vj 4= i, we get that 

l i m L [  P ( { x j ( T j )  = ejL,  j = 1 . . . .  , n}) 

- ( xo( r? 

= lim ~-] E 
L--~oo i =  1 k ~ i  

X E(cil(~ k = 

1 P(aj = aj(ej), Vj ~ i, k) 

ak(ek)){ ~,(k)l(X ~ = X,(-- )) 

"4- (1 - -  ~ J i ( k ) ) l ( ~ k i  = ~ k i ( ' ~ - ) ) } )  (3.16) 

Equat ion (3.16) reduces the problem to the computa t ion  of exit probabili-  
ties for independent  particles. It is easy to see that the expectat ion on the 
r ight-hand side of Eq. (3.16) in the limit L--> oo is 

if e i = e k = 1 (3.16a) 

_ 3 ifei = ck = - 1 (3.16b) 

1 i f  { , / =  1, c k = - l , e , =  - 1 ,  e k =  1} (3.16c) 

By Lemmas 3.1, 3.2, and Eqs. (3.15), (3.16), we obtain the first-order 
correction to /%01(xi )=  1, i = 1 . . . . .  n) and then it is easy to check that 
this agrees with the estimate of Theorem 2.1 at ~ = 0. The case ~ =/: 0 is 
completely analogous. 

ACKNOWLEDGMENTS 

One of us (P.F.) acknowledges very kind hospitality at the Istituto 
Matemat ico  dell'Universit~t di R o m a  e dell 'Universit/t dell 'Aquila. 

NOTE ADDED IN PROOF 

We are indebted to Herber t  Spohn for the following remark. If one 
considers the f luctuation field 

L 
1 x 

in the s ta te /%,  then one can show that 

lira l%((L(f)~ C(g)) = f dx dy f(x)g(y)(~(x)~(y))  
L--> oo 

The covariance of the limit f luctuation field is given by 

<~(x)~(y)> = / , ( x ) [ 1  - p ( x ) ] 8 ( x - y )  + (p')2zX kx,  y), Ixl < 1, IYl < t 

where A - 1 ( x , y )  is the kernel of the inverse Laplacian on [ - 1 ,  1] with 
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Dirichlet boundary conditions. At coinciding arguments 

A - ' ( x , x )  = �89 - x2) 

Therefore also in the steady state one finds the structure obtained for 
time-dependent states: the strength of the two-body interaction is deter- 
mined by the regular part of the covariance of the fluctuation field at 
coinciding arguments. 
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